My lab is uniquely poised to develop and implement in-situ nuclear magnetic resonance (NMR) and small angle neutron scattering (SANS) techniques to understand various liquid-phase and heterogeneous catalytic reactions of biomass. For example, using a high-pressure and -temperature SANS reaction cell, we will perform in-situ SANS experiments on lignin undergoing catalytic depolymerization. We are interested in making novel contributions to improvements in biomass characterization to understand biomass recalcitrance.
A new area I am exploring is the ways that biomass recalcitrance relates to how plant adapt themselves in response to mechanical stimuli. The protection of the plant cell wall against breakdown is central to cell homeostasis and to how cells direct growth of the plant. As part of an NSF Science and Technology Center for Engineering Mechanobiology, I am interested in developing a new analytical toolkit, such as Atomic Force Microscope Infrared-Spectroscopy (AFM-IR) and AFM-Time-of-Flight Secondary Ion Mass Spectrometry (AFM-ToF-SIMS), to uncover fundamental relationships between biomass compositional and mechanical properties.